Nichtamtliche Lesefassung

Anhang I für den Studienanteil Physik im Studiengang Lehramt an Gymnasien (L3) vom 13. Juni 2018 zur Studien- und Prüfungsordnung Lehramt der Johann Wolfgang Goethe-Universität Frankfurt am Main vom 18.07.2016 (SPoL)

Mit den Änderungen vom 22. Januar 2020

Für das Studium des Studienanteils Physik im Studiengang Lehramt an Gymnasien (L3) hat der Fachbereich Physik am 13. Juni 2018 im Einvernehmen mit der Akademie für Bildungsforschung und Lehrerbildung am 9. April 2018 folgende Regelungen beschlossen. Das Präsidium der Johann Wolfgang Goethe-Universität hat diese gemäß § 37 Abs. 5 Hessisches Hochschulgesetz am 24. Juli 2018 die Hessische Lehrkräfteakademie im Auftrag des Hessischen Kultusministeriums gemäß § 16 Hessisches Lehrerbildungsgesetz, § 20 Abs. 1 Durchführungsverordnung zum Hessischen Lehrerbildungsgesetzes am 11. Juli 2018 genehmigt. Sie werden hiermit bekannt gemacht.

1. Spezifische Zielsetzungen des Studienanteils (§ 3 SPoL)

1.1 Allgemeine Ziele

Ziel des Studienanteils Physik ist es, den Studentinnen und Studenten die fachwissenschaftlichen und fachdidaktischen Qualifikationen zu vermitteln, die benötigt werden, um Physikunterricht in allen gymnasialen Stufen zu erteilen. Darüber hinaus sollen die künftigen Lehrerinnen und Lehrer zur Entwicklung neuer Curricula beitragen können.

Insbesondere sollen die Absolventinnen und Absolventen des L3-Studienganges in der Lage sein, Schülerinnen und Schülern die grundlegenden Prinzipien der Physik, der physikalischen Naturbeschreibung und deren wichtigste Ergebnisse zu vermitteln:

- Im Physikunterricht soll erkennbar werden, dass die Physik die Grundlagen für das Verständnis vieler Naturerscheinungen liefert und in allen Naturwissenschaften, der Medizin und der Technik eine wichtige Rolle spielt.
- Die Schülerinnen und Schüler sollen die Bedeutung physikalischer Forschung sowie die gesellschaftlichen Auswirkungen, die von ihrer Anwendung ausgehen, erkennen und beurteilen lernen.
- Die Absolventinnen und Absolventen sollen die Physik im Unterricht so vermitteln k\u00f6nnen, dass die Freude an naturwissenschaftlicher Arbeit und dem Auffinden neuer Erkenntnisse entsteht.

1.2 Fachliche Ziele

Das fachwissenschaftliche Studium soll künftigen Gymnasiallehrkräften die Kenntnisse und Fähigkeiten vermitteln, die für ein wissenschaftliches Arbeiten in der Physik notwendig sind. Dies erfordert einen Überblick über das Gesamtgebiet der heutigen Physik, der sie in die Lage versetzt, selbständig physikalische Methoden und Erkenntnisse so aufzubereiten, dass ein interessanter Unterricht entsteht. Während des Studiums sollen sie die Fähigkeit erwerben, die Gegenstände physikalischer Beschreibung nach den hierzu verwendeten Modellen zu ordnen, um so Analogien zu erkennen und zur Erklärung physikalischer Zusammenhänge einsetzen zu können. Ferner sollen die künftigen Lehrer und Lehrerinnen aufgrund ihres Fachstudiums in der Lage sein, sich über die Entwicklung der Physik und deren gesellschaftliche Auswirkungen auf dem Laufenden zu halten und die neuen Erkenntnisse in den Unterricht einfließen zu lassen. Fachwissenschaftliche Kompetenzen sind:

- gründliche Kenntnisse der Gebiete Mechanik, Elektrodynamik, Optik, Thermodynamik, Quantenmechanik, sowie Kenntnisse der Grundzüge der Struktur der Materie (Atom-, Kern- und Festkörperphysik);
- das Vermögen, diese Gebiete von einem höheren Standpunkt aus zu beurteilen, um im Schulunterricht flexibel und konstruktiv reagieren zu können;

- Fähigkeiten, Kenntnisse und Fertigkeiten zur Vermittlung physikalischer Inhalte durch Experimente im Schulunterricht;
- Überblick über technische Anwendungen der Physik;
- Kenntnisse aus der Geschichte der Physik und der grundlegenden Begriffsbildung;
- die Bereitschaft und Fähigkeit, sich in neue Gebiete der Physik selbständig einarbeiten zu können.

1.3 Fachdidaktische Ziele

Zu den physikdidaktischen Grundanforderungen gehören:

- Wissen über die Stellung des Physikunterrichts an der Schule;
- Einsicht in Probleme und Schwierigkeiten der Physikvermittlung;
- Kenntnis didaktisch-methodischer Konzepte zur begründeten Auswahl von Unterrichtsinhalten;
- sachgerechter Einsatz verschiedener, auch neuer, Medien (einschließlich Multimedia);
- Reflexion über die Rolle von Physik und Technik in der schulisch vermittelten Allgemeinbildung.

Diese Kenntnisse sollen die Studierenden dazu befähigen, einen attraktiven Physikunterricht zu gestalten, der altersangemessen die Leistungsfähigkeit und die entwicklungspsychologische Lage der Schülerinnen und Schüler berücksichtigt. Die Schülerinnen und Schüler sollen zum System der physikalischen Theorien hingeführt werden. Damit soll eine dauerhafte Grundlage für das Verständnis physikalisch-technischer Gesetzmäßigkeiten gelegt werden.

2. Studienbeginn, Zugangsvoraussetzungen, studienanteilsspezifische Kenntnisse und Fähigkeiten

2.1 Studienbeginn (§ 6 SPoL)

Das Studium kann nur zum Wintersemester aufgenommen werden.

2.2 Zugangsvoraussetzungen zum Studienanteil (§ 7 SPoL)

Es bestehen keine spezifischen Zugangsvoraussetzungen zum Studienanteil.

2.3 Studienanteilsspezifische Kenntnisse und Fähigkeiten

Sinnvoll sind mindestens befriedigende Mathematikkenntnisse der Oberstufe. Erwartet wird die Fähigkeit selbstständigen Arbeitens.

3. Umfang und Struktur des Studiums (§ 4 SPoL)

3.1 Festlegungen zum Studienverlauf

Die Module sollen in der im Studienverlaufsplan angegebenen Reihenfolge studiert werden. Dabei gelten folgende Zugangs- bzw. Teilnahmevoraussetzungen (vgl. Modulbeschreibungen):

- Voraussetzung f
 ür den Zugang zu Modul 6 sind die erfolgreichen Abschl
 üsse der Modulpr
 üfungen zu Modul 1 und Modul 3.
- Voraussetzung für den Zugang zu Modul 8 ist der erfolgreiche Abschluss der Modulprüfung zu Modul 6.
- Voraussetzung für den Zugang zu Modul 9 sind die erfolgreichen Abschlüsse der Modulprüfungen der Module 1-4 und des Praxissemesters.

Es ist ein Praxissemester gemäß der jeweils gültigen Ordnung zu absolvieren. Es wird in Physik ausschließlich im Wintersemester angeboten.

3.2 Modulübersicht und Studienverlaufsplan

Der Studienanteil beinhaltet neun Pflichtmodule. Die Tabelle gibt einen Überblick über die Module, und es wird ein Vorschlag zur Organisation des Studiums in der Regelstudienzeit und unter Berücksichtigung der Praxisphasen und der Gesamtbelastung gemacht.

					CP p	oro Sei	nestei	/ dav	on FD	-Ante	il		
Nr. (P/ WP)	Modulbezeichnung	Lehrveranstaltung (LV)	LV- Art	SWS	1	2	3	4	5	6	7	8	FD
N/1	Disculation dis Disc	Ex1a Mechanik	V+Ü	2 . 1	6		I						0
M1 (P)	Einführung in die Phy- sik 1	Ex 1b Thermodynamik	V+Ü V+Ü	3+1 2+1	4								0
(1)	SIK I	EXTO THEIMOUGHAMIK	V+U	2+1	4								
3.50		Einführung in die Physikdidaktik	S	2	3								3
M2	Physikdidaktische	Fachdidaktische Vertiefung der	_~										
(P)	Grundlagen	klassischen Physik	S	2		2							2
M3	Einführung in die Phy-	Ex2 Elektrodynamik	V+Ü	4+2		8							0
(P)	sik 2	Anfängerpraktikum für L3	P	4		6							0
	T				1	1		1	1		1		
M4	Experimentelle De-	Praktikum Experimentelle De-	P	4				7					5
(P)	monstrationen	monstrationen											
	T			2.1	1	ı	ı		ı		ı		
M5	Physikalische Modelle	Mathematische Methoden für L3	V+Ü	3+1				3					0
(P)	1	Theoretische Physik 1 für L3	V+Ü	3+2					6				0
		Theoretische Physik 2 für L3	V+Ü	3+2						6			0
	T	Ex3a Optik	V+Ü	2+1	1	I	I	I	4		I		0
M6		Ex3b Atome und Quanten	V+Ü V+Ü	2+1					4				0
(P)	Struktur der Materie	Ex4a Kerne und Elementarteil-							4				Ť
(1)		chen od. Ex4b Festkörper	V+Ü	2+1						4			0
	T	T 1 1 1 1 2 1 37 2 6 1				1		I	I		I		
M7	Physikalische Modelle	Fachdidaktische Vertiefung der modernen Physik	S	2						3			2
(P)	2	Theoretische Physik 3 für L3	V+Ü	3+2							6		0
		Theoreusene i nysik 5 tui Es	VIO	312	1	1					0		
M8	Fortgeschrittenenprak-	E . 1.11	ъ	2									
(P)	tikum	Fortgeschrittenenpraktikum	P	3							5		0
		Methodik des Physikunterrichts	S	3								4	4
M9 (P)	Physikdidaktische Ver- tiefung	Analyse fachlicher Unterrichts- prozesse	S	2								4	4
(1)	uciung	Physikdidaktisches Wahl- pflichtseminar	S	2								3	3
			Σ	65	13	16	0	10	14	13	11	11	23

4. Besondere Lehr- und Lernformen, weitere Prüfungsformen

4.1 Besondere Lehr- und Lernformen (§ 12 Abs. 2 SPoL)

Es werden keine besonderen Lehr- und Lernformen im Studienanteil angeboten.

4.2 Besondere Prüfungsformen (§ 28 Abs. 4 i. V. m. § 35 SPoL)

Es werden die folgenden besonderen Prüfungsformen im Studienanteil angeboten: Experimentalvortrag (Präsentation von Experimenten mit Erläuterungen), Ausarbeitung und Analyse von Unterrichtseinheiten (schriftliche Hausarbeit).

5. Festlegungen zur Ersten Staatsprüfung (§ 45 SPoL)

Studierende bringen gemäß § 29 Abs.4 HLbG ein Ergebnis aus den Modulprüfungen M1, M3 und M6, ein Ergebnis aus den Modulprüfungen M2 und M9, ein Ergebnis aus den Modulprüfungen M4 und M8 und ein Ergebnis aus den Modulprüfungen M5 und M7 ein.

6. Promotion

Das wissenschaftliche Studium des Faches Physik kann nach bestandener Erster Staatsprüfung im Fachbereich Physik mit dem Ziel der Promotion fortgesetzt werden; mögliche Promotionsfächer sind dabei Physik und Didaktik der Physik. Es gilt die Promotionsordnung der Mathematisch-Naturwissenschaftlichen Fachbereiche in der jeweils gültigen Fassung.

7. Inkrafttreten und Übergangsregelung (§ 47 SPoL)

Die Ordnung tritt ab dem Wintersemester 2018 in Kraft. Sie gilt für Studierende die ihr Studium ab dem Wintersemester 2018 aufgenommen haben. Für Studierende, die ihr Studium vor dem Wintersemester 2018 aufgenommen haben, gilt die Ordnung vom 1. November 2011 fort, Prüfungen nach dieser Ordnung können noch bis zum 30. September 2025 abgelegt werden. Auf Antrag ist ein Wechsel in die neue Ordnung möglich, Studien- und Prüfungsleistungen werden angerechnet.

Frankfurt am Main, den 07.08.2018

Prof. Dr. Holger Horz

Geschäftsführender Direktor der Akademie für Bildungsforschung und Lehrerbildung

Frankfurt am Main, den 16.08.2018

Prof. Dr. Owe Philipsen

Dekan des Fachbereichs Physik

Anlagen:

a. Modulbeschreibungen

M1	Einführung in die Physik 1	Pflichtmodul	10 CP (insg.) = 300 h^3		7 SWS
			Kontaktstudium 7 SWS / 101,5 h	Selbststudium 198,5 h	

Inhalte

"Mechanik': Massepunktnäherung, Kräfte, Gravitation, Newton'sche Gesetze, Bewegungsgleichungen, Impuls- und Energieerhaltung, Stoßgesetze, trockene Reibung, Reibung im Fluid, harmonischer Oszillator (ungedämpft und gedämpft), starre Körper, Drehmoment, Drehimpuls, Bewegungsgleichung der Rotation, Drehimpulserhaltung, Scheinkräfte bei Rotation, Kepler'sche Gesetze.

,Thermodynamik': Temperatur, Druck und ihre Messung, Aggregatzustände, Wärme, molekulare Wärmeleitung, Konvektion, Wärmestrahlung, Thermografie, Zustandsdiagramme, Zustandsgrößen (p, V,T), ideales Gas, kinetische Gastheorie, Maxwell-Boltzmann-Verteilung, Gleichverteilungssatz, Regel von Dulong-Petit, Zustandsgleichung, spezifische Wärme, barometrische Höhenformel, Partialdruck, Osmose, Zustandsänderungen (reversibel/irreversibel, adiabatisch/isotherm/isobar/isochor), Gleichgewicht/Nichtgleichgewicht, Entropie und Wahrscheinlichkeit, Hauptsätze, Kreisprozesse, Wärmekraftmaschinen, Kältemaschinen und Wärmepumpen, reale Gase, Phasenumwandlung (van der Waals-Gleichung), Dampfdruckkurve, Gibb'sche Phasenregel, Planck'sches Strahlungsgesetz, Hydrodynamik (u.a. Kontinuitätsgleichung, Bernoulli-Gleichung, Strömung in Röhren, Wirbel, Oberflächenspannung).

Lernergebnisse / Kompetenzziele

"Mechanik": Die Studierenden kennen die Grundbegriffe und elementaren Zusammenhänge der Mechanik und der allgemeinen Physik. Sie können mit vektoriellen Größen operieren und Bewegungsvorgänge der Translation und Rotation durch die Aufstellung von Bewegungsgleichungen und deren Lösung analysieren.

,Thermodynamik': Die Studierenden können mit statistischen Beschreibungen von Teilchenensembles im thermodynamischen Gleichgewicht und bei (reversiblen) Zustandsänderungen umgehen. Sie begreifen thermodynamische Zusammenhänge als statistische Vorgänge. Sie können das Modellsystem des idealen Gases erklären und verschiedene Arten von Zustandsänderungen und Kreisprozessen erläutern. Die Studierenden kennen den Unterschied zwischen linearer und turbulenter Strömung.

Die in der Vorlesung erarbeiteten Grundlagen werden später im Anfängerpraktikum experimentell angewendet.

Teilnahmevoraussetzungen für Modul bzw. für einzelne Lehrveranstaltungen des Moduls

Empfohlene Voraussetzungen Keine **Zuordnung des Moduls (Studiengang / Fachbereich)** L3 Physik / Fachbereich Physik Verwendbarkeit des Moduls für andere Studiengänge jährlich Häufigkeit des Angebots 1 Semester Dauer des Moduls gem. Veranstaltungsverzeichnis Modulbeauftragte / Modulbeauftragter Studiennachweise/ ggf. als Prüfungsvorleistungen regelmäßige Teilnahme in allen Übungen Teilnahmenachweise in allen Übungen Leistungsnachweise

Vorlesung, Übung

Deutsch

Lehr-/Lernformen

Unterrichts-/Prüfungssprache

 $^{^{1}}$ 1 CP = 30 h

Mo	odulprüfung	Form	Form / Dauer / ggf. Inhalt									
	Modulabschlussprüfung bestehend aus:				Klausur (60 - 90 Minuten)							
		LV-Form	SWS	СР	Seme	ester						
	1 Evilar Machanili (his gun				1	2	3	4	5	6	7	8
	1 Ex1a: Mechanik (bis zur Weihnachtspause)	V	3	6	6							
		Ü	1									
	2 Ex1b: Thermodynamik (beginnt nach Weihnachts-	V	2	4	4							
	pause)	Ü	1	1								
	Summe		7	10	10							

M2	Physikdidaktische Grundlagen	Pflichtmodul	5 CP (insg.), davon 5	CP FD = 150 h	4 SWS
	Grundingen		Kontaktstudium 4 SWS / 58 h	Selbststudium 92 h	

"Einführung in die Physikdidaktik': Ausgewählte fachdidaktische und methodische Themen wie Schülervorstellungen, Elementarisierung, Modellbildung im Physikunterricht, Curricula, Bildungsstandards.

"Fachdidaktische Vertiefung der klassischen Physik": Ausgehend von Schülervorstellungen und typischen Lernschwierigkeiten von Schülerinnen und Schülern in der klassischen Physik werden Inhalte der vorausgegangenen Experimentalvorlesungen qualitativ neu durchdacht. Darauf aufbauend werden alternative Unterrichtsansätze und Methoden zur Veränderung von Schülervorstellungen behandelt.

Lernergebnisse / Kompetenzziele

"Einführung in die Physikdidaktik": Die Studierenden verfügen über ein grundlegendes Wissen fachdidaktischer und methodischer Themen, Positionen und Forschungsansätze und können dies in einfachen Beispielen anwenden.

"Fachdidaktische Vertiefung der klassischen Physik": Die Studierenden verfügen über vertieftes qualitatives Verständnis für schulrelevante physikalische Inhaltsgebiete. Sie kennen typische Schülervorstellungen, Lernschwierigkeiten von Schülerinnen und Schülern sowie Ansätze zur Veränderung dieser Vorstellungen. Sie setzen sich mit alternativen Unterrichtsansätzen für ausgewählte Inhaltsbereiche und Erkenntnismethoden der Physik auseinander.

Teilnahmevoraussetzungen für Modul bzw. für einzelne Lehrveranstaltungen des Moduls

- keine -

Empfohlene Voraussetzungen

- keine -

Zuordnung des Moduls (Studiengang / Fachbereich)	L3 Physik / Fachbereich Physik
Verwendbarkeit des Moduls für andere Studiengänge	J.
Häufigkeit des Angebots	jährlich
Dauer des Moduls	2 Semester
Modulbeauftragte / Modulbeauftragter	Institut für Didaktik der Physik
Studiennachweise/ ggf. als Prüfungsvorleistungen	
Teilnahmenachweise	aktive Teilnahme in beiden Lehrveranstaltungen
Leistungsnachweise	- keine -
Lehr- / Lernformen	Seminar

U	nterrichts- / Prüfungssprache	Deutsch	Deutsch									
N	Iodulprüfung	Form /]	Form / Dauer / ggf. Inhalt									
	Modulabschlussprüfung bes		Klausur (60 - 90 Minuten) oder Hausarbeit oder Portfolio oder Referat mit Ausarbeitung oder mündliche Prüfung (30 Minuten)									
		LV-Form	SWS	СР	Seme	ester						
		2, 10,			1	2	3	4	5	6	7	8
	1 Einführung in die Physik- didaktik	S	2	3, davon 3 CP FD	3							
	2 Fachdidaktische Vertie- fung der klass. Physik	S	2	2, davon 2 CP FD		2						
	Summe		4	5	3	2						

M3	Einführung in die Physik 2	Pflichtmodul	14 CP (insg.) = 420 h		10 SWS
	I IIJUM Z		Kontaktstudium 10 SWS / 145 h	Selbststudium 275 h	

,Ex2 Elektrodynamik': Veranschaulichung von Vektorfeldern anhand hydrodynamischer Beispiele, Elektrostatik, Potential und potentielle Energie, Satz von Gauβ, Faraday-Käfig, van-de-Graaff-Generator, Feldelektronenmikroskop, Kondensator, Dielektrika, elektrischer Strom, Ohm'sches Gesetz (mikroskopisch und makroskopisch), Kirchhoff'sche Gesetze, Magnetostatik, magnetische Materialeigenschaften, Halleffekt, Ampere'sches Gesetz, Biot-Savart-Gesetz, Spule, Elektromotor, magnetische Induktion, Wirbelströme, Magnetismus, zeitlich veränderliche Felder, komplexer Widerstand, Rolle der Phase, Transformator, Schwingkreis, Maxwellsche Gleichungen, elektromagnetische Wellen, Dipolstrahlung, Wellenleiter und Resonatoren, Lorentztransformation der Felder.

,Anfängerpraktikum': Physikalische Experimente zur klassischen Physik (Mechanik, Optik, Wärme- und Elektrizitätslehre).

Lernergebnisse / Kompetenzziele

,Ex2 Elektrodynamik': Die Studierenden kennen die Grundbegriffe und elementaren Zusammenhänge der klassischen Physik und können diese anwenden. Sie können die physikalischen Gesetze und Zusammenhänge qualitativ erläutern. Sie erfassen die physikalischen Gesetze in ihrer Mathematisierung und können die physikalischen Gröβen berechnen.

,Anfängerpraktikum': Die Studierenden beherrschen die Grundtechniken des Experimentierens. Sie können die Ergebnisse ihrer Experimente protokollieren, auswerten und eine Fehlerbetrachtung und –rechnung durchführen. Die Studierenden entwickeln ihre Sozial- und Kommunikationskompetenz durch Teamarbeit.

Teilnahmevoraussetzungen für Modul bzw. für einzelne Lehrveranstaltungen des Moduls

- keine -

Empfohlene Voraussetzungen

Besuch von LV 1 und 2 (Experimentalphysik 1a und 1b) in Modul 1

Zuordnung des Moduls (Studiengang / Fachbereich)	L3 Physik / Fachbereich Physik
Verwendbarkeit des Moduls für andere Studiengänge	
Häufigkeit des Angebots	jährlich
Dauer des Moduls	1 Semester
Modulbeauftragte / Modulbeauftragter	gem. Veranstaltungsverzeichnis
Studiennachweise/ ggf. als Prüfungsvorleistungen	

	Teilnahmenachweise			regelm.	regelm. Teiln. in der Übung zu LV 1 und im Praktikum (LV 2)									
	Leistungsnachweise			in der Übung zu LV 1 und im Praktikum (LV 2)										
L	ehr- / Lernformen			Vorlesung, Übung, Praktikum										
U	nterrichts- / Prüfungssprache	Deutsch	า											
M	odulprüfung	Form /	Dauer /	ggf. In	halt									
	Modulabschlussprüfung bestehend aus:			Klausui	r (60 - 90) Minut	en)							
		LV-Form	SWS	СР	Seme	ster								
					1	2	3	4	5	6	7	8		
	1 Ex2: Elektrodynamik	V	4	8		8								
		Ü	2											
	2 Anfängerpraktikum für L3	P	4	6		6								
	Summe		10	14		14								

M4	Experimentelle De- monstrationen	Pflichtmodul	7 CP (insg.), davon 5	CP FD = 210 h	4 SWS
			Kontaktstudium 4 SWS / 58 h	Selbststudium 152 h	

Grundlegende Experimente des Physikunterrichts der Sekundarstufe I und II; Gerätekunde schultypischer Geräte; Zielsetzung und didaktisches Potential von Demonstrationsexperimenten, Schülerexperimenten, Freihandexperimenten, Modellexperimenten, etc.; rechnergestütztes Experimentieren und computerbasierte Messwerterfassung; Präsentation von Experimenten; Sicherheit im Physikunterricht.

Lernergebnisse / Kompetenzziele

Die Studierenden kennen Kategorien von Experimenten, ihre Funktion und ihr didaktisches Potential. Sie können mit handelsund schulüblichen Lehrgeräten und Experimentiermaterialien kompetent umgehen und Strategien zur systematischen Analyse von Fehlerquellen beim eigenen Experimentieren entwickeln. Sie können Experimente lernziel- und schülerorientiert auswählen, aufbauen und präsentieren.

Teilnahmevoraussetzungen für Modul bzw. für einzelne Lehrveranstaltungen des Moduls

- keine -

Empfohlene Voraussetzungen

- keine -

Zuordnung des Moduls (Studiengang / Fachbereich)	L3 Physik / Fachbereich Physik
Verwendbarkeit des Moduls	./.
für andere Studiengänge	
Häufigkeit des Angebots	jedes Semester
Dauer des Moduls	1 Semester
Modulbeauftragte / Modulbeauftragter	Institut für Didaktik der Physik
Studiennachweise/ ggf. als Prüfungsvorleistungen	
Teilnahmenachweise	regelmäßige Teilnahme
Leistungsnachweise	J.
Lehr-/Lernformen	Praktikum

U	nterrichts- / Prüfungssprache	Deutsch	Deutsch															
N	Iodulprüfung	Form / 1	Dauer /	ggf. Inl	nalt													
	Modulprüfung:	Experim	Experimentalvortrag und Ausarbeitung															
	LV-Form		LV-Form SWS CF		LV-Form SWS		LV-Form SWS		LV-Form SWS		Semes	ster						
			1	2			3	4	5	6	7	8						
	1 Praktikum Experimentelle Demonstrationen	P	4	7, davon 5 CP FD				7										
	Summe		4	7				7										

M5	Physikalische Mo- delle 1	Pflichtmodul	15 CP (insg.) = 450 h		14 SWS
	delle 1		Kontaktstudium 14 SWS / 203 h	Selbststudium 247 h	

- "Mathematische Methoden für L3": Grundlagen der Analysis und linearen Algebra.
- ,Theoretische Physik 1': Newtons Gesetze, Bewegung in einer Dimension, Oszillatoren, Bewegung zweier Massenpunkte, Bewegung in drei Dimensionen und Keplerproblem, beschleunigte Bezugssysteme, Bewegung starrer Körper.
- ,Theoretische Physik 2': Elektrostatik, Magnetostatik, Maxwell-Gleichungen, spezielle Anwendungen der Elektrodynamik.

Lernergebnisse / Kompetenzziele

Die Studierenden kennen die fachwissenschaftliche Begriffs-, Modell- und Theoriebildung der klassischen Physik und deren Systematik und wenden sie in ausgewählten Aufgaben an.

Teilnahmevoraussetzungen für Modul bzw. für einzelne Lehrveranstaltungen des Moduls

- keine -

Empfohlene Voraussetzungen

- keine -

Zuordnung des Moduls (Studier	gang / Fach	bereich)	L3 Physik / Fachbereich Physik											
Verwendbarkeit des Moduls			./.											
für andere Studiengänge														
Häufigkeit des Angebots			jährlich											
Dauer des Moduls			3 Semester											
Modulbeauftragte / Modulbeauf	Modulbeauftragte / Modulbeauftragter					Physik								
Studiennachweise/ ggf. als Prüfu														
Teilnahmenachweise	Teilnahmenachweise					aktive und regelmäßige Teilnahme in den Übungen								
Leistungsnachweise			./.	J.										
Lehr-/ Lernformen			Vorlesur	Vorlesung, Übung										
Unterrichts-/Prüfungssprache			Deutsch											
Modulprüfung			Form / I	Dauer /	ggf. Inl	alt								
Modulabschlussprüfung best	mündliche Prüfung im Zusammenhang mit LV 3, Dauer 30 Min.													
	LV-Form	SWS	СР	Semes	ster									
	Lv-roilli	่อพอ		1	2	3	4	5	6	7	8			
	1		I	1		1	1	1	1	1	1			

1 Mathematische Methoden für L3	V	3	3		3			
Tur 123	Ü	1						
2 Theoretische Physik 1 für L3	V	3	6			6		
	Ü	2						
3 Theoretische Physik 2 für L3	V	3	6				6	
	Ü	2						
Summe		14	15		3	6	6	

M6	Struktur der Mate- rie	Pflichtmodul	12 CP (insg.) = 360 h		9 SWS
			Kontaktstudium 9 SWS / 130,5 h	Selbststudium 229,5 h	

Pflichtveranstaltungen:

Ex 3a Optik': Wellenoptik, ebene Wellen, Polarisation, elektromagnetische Wellen in Materie, komplexer Brechungsindex, Übergang von einem Material in ein anderes, Fresnel-Gleichungen, Interferenz, geometrische Optik, Fermat'sches Prinzip, optische Abbildung, optische Instrumente, Beugung, beugungsbegrenztes Auflösungsvermögen, Grundzüge der Abbe'schen Abbildungstheorie, quantenoptischer Ansatz, optisches Pumpen und Laserübergänge.

,Ex3b Atome und Quanten': Größe und Nachweis von Atomen, das Photon, Photoeffekt, Comptoneffekt, Hohlraumstrahlung, Rutherfordstreuung, Teilchen als Wellen, Unschärferelation, Bohr'sches Atommodell, Grundlagen der Quantenmechanik, Wellenfunktion, Schrödingergleichung, Potentialkasten, harmonischer Oszillator, Tunneleffekt, Quantenmechanik des Wasserstoffatoms, Spin, Feinstruktur, Lambshift, Hyperfeinstruktur, Zeemaneffekt, Paschen-Back-Effekt, Stern Gerlach Experiment, Pauliprinzip, das H2+ Molekül

Wahlpflichtveranstaltungen (1 aus 2 auswählen):

,Ex 4a Kerne und Elementarteilchen': Aufbau und Struktur der Atomkerne; Kernreaktionen: Spaltung, Synthese, Fusion; Kernkraft; Radioaktivität; Streuexperimente; Struktur des Protons; elementare Wechselwirkungen und Teilchen: Leptonen, Hadronen, Quarks, Austauschteilchen; das Quarkmodell, das Standardmodell der Teilchenphysik; starke, schwache und elektromagnetische Wechselwirkung; Nachweismethoden: Wechselwirkung von Strahlung mit Materie, Experimente und Detektoren der Teilchenphysik; Astrokernphysik.

"Ex 4b Festkörper": Grundlagenforschung an Festkörpern und Festkörper in der technischen Anwendung, Chemische Bindung, Aufbau kristalliner Festkörper, Streuung an periodischen Strukturen, reziprokes Gitter, Modell freier Elektronen, Bändermodell, Metalle und Isolatoren, Grundvorstellungen Supraleiter/Halbleiter, experimentelle Methoden der Festköperphysik.

Lernergebnisse / Kompetenzziele

Die Studierenden lernen den Paradigmenwechsel von der klassischen zur modernen Physik kennen. Sie besitzen Kernkompetenzen zur abstrakten Problemlösung außerhalb unserer Alltagserfahrung. Dieses Modul der experimentellen Physik erweitert den in den Veranstaltungen Experimentalphysik 1–2 vermittelten Kanon von Schlüsselexperimenten und –phänomenen. Die Studierenden erhalten einen Überblick über die Forschungsgegenstände verschiedener Institute des Fachbereichs.

Teilnahmevoraussetzungen für Modul bzw. für einzelne Lehrveranstaltungen des Moduls

Erfolgreicher Abschluss von Modul 1 und Modul 3

Empfohlene Voraussetzungen														
- keine -														
Zuordnung des Moduls (Studier	gang / Fach	bereich)	L3 F	hysik / Fa	chbereic	h Physi	k							
Verwendbarkeit des Moduls für andere Studiengänge			B. S	B. Sc. Physik, B. Sc. Biophysik, B. Sc. Meteorologie										
Häufigkeit des Angebots			jährl	jährlich										
Dauer des Moduls			2 Se	2 Semester										
Modulbeauftragte / Modulbeauf	tragter		Insti	Institut für Kernphysik, Physikalisches Institut										
Studiennachweise/ ggf. als Prüfu	ıngsvorleistu	ıngen												
Teilnahmenachweise			rege	lmäßige T	eilnahm	e in alle	n Übunş	gen						
Leistungsnachweise	Leistungsnachweise					Leistungsnachweis in allen Übungen								
Lehr- / Lernformen	hr- / Lernformen					Vorlesung, Übung								
Unterrichts- / Prüfungssprache			Deu	Deutsch										
Modulprüfung			For	n / Dauer	/ ggf. Ir	halt								
Modulabschlussprüfung best	tehend aus:			dliche Prü er 30 Min.	-	Zusamn	nenhang	mit LV	1 oder I	V2 ode	r LV3,			
	LV-Form	SWS	СР	Sem	nester									
				1	2	3	4	5	6	7	8			
1 Ex3a: Optik	V	2	4					4						
	Ü	1												
2 Ex3b: Atome und Quanten	V	2	4					4						
	Ü	1												
3 Ex4a Kerne und Teilchen	V	2	4						4					
od. Ex4b Festkörperphysik	Ü	1												
Summe		9	12					8	4					

M7	Physikalische Modelle 2	Pflichtmodul	9 CP (insg.), davon 2 G	CP FD = 270 h	7 SWS
			Kontaktstudium 7 SWS / 101,5 h	Selbststudium 168,5 h	

"Fachdidaktische Vertiefung der modernen Physik': Grundlagen der Atomphysik, Kernphysik und Festkörperphysik; Grundlagen der Quantenphysik, Relativitätstheorie und Astrophysik; fachdidaktische Anforderungen an den Physikunterricht über Moderne Physik.

,Theoretische Physik 3': Die Veranstaltung vermittelt Grundkenntnisse der modernen theoretischen Physik. Im Zentrum stehen die Formulierung der speziellen Relativitätstheorie, Grundlagen der Quantenmechanik und eine konzeptuelle Einführung in die Struktur der Materie.

Lernergebnisse / Kompetenzziele

"Fachdidaktische Vertiefung der modernen Physik': Die Studierenden verfügen über ein grundlegendes Fachwissen zu den aufgeführten Themen und können dies in unterschiedlichen Kontexten anwenden. Die Studierenden kennen typische Lernschwierigkeiten aus den betreffenden Themenbereichen und können Folgerungen für den Physikunterricht ziehen.

,Theoretische Physik 3': Die Studierenden kennen die fachwissenschaftliche Begriffs-, Modell- und Theoriebildung der modernen Physik und deren Systematik und können sie anwenden.

Teilnahmevoraussetzungen für	Modul bzw.	für einzeln	e Lehrverans	taltung	gen des	Modul	8						
- keine -													
Empfohlene Voraussetzungen													
- keine -													
Zuordnung des Moduls (Studier	ngang / Fach	bereich)	L3 Physi	L3 Physik / Fachbereich Physik									
Verwendbarkeit des Moduls für andere Studiengänge			./.	./.									
Häufigkeit des Angebots			jährlich										
Dauer des Moduls			2 Semes	ter									
Modulbeauftragte / Modulbeau	ftragter		Institut f	iir Theo	oretisch	e Physik	x, Institu	t für Di	daktik d	er Physil	K		
Studiennachweise/ ggf. als Prüft													
Teilnahmenachweise	Teilnahmenachweise				regelmäßige Teilnahme in den Übungen zu LV 2 aktive Teilnahme in LV 1								
Leistungsnachweise			./.	J.									
Lehr- / Lernformen			Seminar	Seminar, Vorlesung, Übung									
Unterrichts-/Prüfungssprache			Deutsch	Deutsch									
Modulprüfung			Form /]	Form / Dauer / ggf. Inhalt									
Modulabschlussprüfung bes	tehend aus:		im Zusa der Klau					ne Prüfu	ıng (Daı	ier 30 M	in.) o-		
	LV-Form	SWS	СР	Seme				1		1			
				1	2	3	4	5	6	7	8		
1 Fachdidaktische Vertie- fung der modernen Physik	S	2	3, davon 2 CP FD						3				
2 Theoretische Physik 3 für L3	V	3	6							6			
	Ü	2											
Summe	Summe 7								3	6			

M8	Fortgeschrittenen- praktikum	Pflichtmodul	5 CP (insg.) = 150 h		3 SWS
			Kontaktstudium 3 SWS / 43,5 h	Selbststudium 106,5 h	

Auswahl physikalischer Experimente zu komplexen physikalischen Fragestellungen. Versuche aus Themenkreisen wie: Hall-Effekt und Bandstruktur, Optisches Pumpen, Supraleitung und Phasenübergänge, Magnetische Hysterese, Filtern im Fourierraum, Hochfrequenzresonatoren, Ultrahochvakuum und Massenspektrometer, Volumenplasma, Multipol-Magnetfeldanalyse, digitale Steuerung, Mößbauer-Effekt, Röntgenfluoreszenz, β -Spektrometer, Ionisationskammer, Υ - Υ -Spektroskopie, Blitzlichtfotolyse, IR-Spektroskopie.

Lernergebnisse / Kompetenzziele

Die Studierenden besitzen experimentelle Fertigkeiten und können diese auf mehreren Gebieten der modernen Physik anwenden. Sie können sich in ausgewählte Gebiete der Physik selbstständig einarbeiten, die Ergebnisse ihrer Laborarbeit exakt dokumentieren, interpretieren und eine kritische Evaluation ihrer experimentell gewonnenen Daten durchführen. Die Studierenden entwickeln ihre Sozial- und Kommunikationskompetenz durch Teamarbeit im Labor. Dabei lernen die Studierenden die Forschungsschwerpunkte der Institute kennen.

Teilnahmevoraussetzungen für Modul bzw. für einzelne Lehrveranstaltungen des Moduls

Erfolgreicher Abschluss von Modul 6

Empfohlene Voraussetzungen

- keine -													
Zuordnung des Moduls (Studie	engang / Fach	bereich)	L3 Pł	L3 Physik / Fachbereich Physik									
Verwendbarkeit des Moduls für andere Studiengänge													
Häufigkeit des Angebots			jedes	jedes Semester									
Dauer des Moduls			1 Sen	1 Semester									
Modulbeauftragte / Modulbeau	ıftragter		gem.	Veransta	altungsve	rzeichn	is						
Studiennachweise/ ggf. als Prü													
Teilnahmenachweise	aktive	aktive und regelmäßige Teilnahme											
Leistungsnachweise				Protokolle									
Lehr- / Lernformen			Prakt	Praktikum									
Unterrichts-/Prüfungssprache	2		Deuts	sch									
Modulprüfung			Form	1 / Daue	r / ggf. Iı	halt							
Modulabschlussprüfung be	stehend aus:		Müno	lliche Pr	üfung (20) Minute	en) oder	Referat	mit Au	sarbeitu	ng		
	LV-Form	SWS	СР	Ser	nester								
	2 , 1 , 1 , 1			1	2	3	4	5	6	7	8		
1 Fortgeschrittenenprakti- kum	P	3	5							5			
Summe		3	5							5			

M9	Physikdidaktische Vertiefung	Pflichtmodul	11 CP (insg.), davon	11 CP FD = 330 h	7 SWS
	verticiting		Kontaktstudium 7 SWS / 101,5 h	Selbststudium 228,5 h	

"Methodik des Physikunterrichts': Die Studierenden entwickeln Unterrichtsmaterialien unter Anwendung verschiedener methodischer Konzepte und Unterrichtsformen. Darauf basierend konzipieren sie eine konkrete Unterrichtseinheit zu einem ausgewählten Schwerpunkt.

"Analyse fachlicher Unterrichtsprozesse": Theoriegeleitete Analysen der Unterrichtsplanungen und -durchführungen z.T. anhand von personenbezogenen Unterrichtsvideos sowie in Peerberatungen; Vergleich von Selbst- und Fremdeinschätzung; Schulung professioneller Unterrichtswahrnehmung.

,Physikdidaktisches Wahlpflichtseminar': Veranstaltungen zu verschiedenen Fragestellungen der Physikdidaktik (siehe Angebot im Vorlesungsverzeichnis).

Lernergebnisse / Kompetenzziele

"Methodik des Physikunterrichts': Die Studierenden kennen fachdidaktische Theorien und Forschung für Lehren und Lernen. Sie können fachdidaktische Ansätze zur Konzeption von Unterrichtsprozessen erläutern und in exemplarischen Unterrichtsentwürfen mit Blick auf Medienpädagogik umsetzen. Sie können schulische und außerschulische Praxisfelder erfassen und kritisch analysieren, sowie fachspezifische Lernschwierigkeiten berücksichtigen und Fördermöglichkeiten entwickeln.

,Analyse fachlicher Unterrichtsprozesse': Die Studierenden können ihre Kenntnisse in konkreten Unterrichtsplanungen umsetzen. Das beinhaltet: kurze Unterrichtseinheiten selbstständig entwerfen und durchführen; lernrelevante Aspekte bzw. Situationen im Physikunterricht identifizieren und theorie- sowie erfahrungsbasiert begründen; Handlungsoptionen zu verschiedenen lernrelevanten Situationen benennen und theorie- sowie erfahrungsbasiert begründen; fremden Unterricht gezielt beobachten und Rückmeldung geben; eigenes Unterrichtshandeln z.B. videobasiert kritisch reflektieren.

,Physikdidaktisches Wahlpflichtseminar': Die Studierenden verfügen über ein weiterführendes Wissen zu fachdidaktischen Themen, Positionen und Forschungsansätzen und können diese anhand relevanter Kriterien reflektieren.

Teilnahmevoraussetzungen für Modul bzw. für einzelne Lehrveranstaltungen des Moduls

Module 1-4, Praxissemester

Empfohlene Voraussetzungen

- keine -	
- Keme -	
Zuordnung des Moduls (Studiengang / Fachbereich)	L3 Physik / Fachbereich Physik
Verwendbarkeit des Moduls für andere Studiengänge	./.
Häufigkeit des Angebots	jährlich
Dauer des Moduls	2 Semester
Modulbeauftragte / Modulbeauftragter	Institut für Didaktik der Physik
Studiennachweise/ ggf. als Prüfungsvorleistungen	
Teilnahmenachweise	regelmäßige Teilnahme in allen drei Veranstaltungen.
Leistungsnachweise	./.
Lehr- / Lernformen	Seminar
Unterrichts-/Prüfungssprache	Deutsch

M	odulprüfung			Form /	Dauer /	ggf. In	halt					
	kumulative Modulprüfung b	estehend aus	s:	3	je ein/e Hausarbeit, Portfolio oder Referat mit Ausarbeitung in jede der drei Lehrveranstaltungen							jeder
	Bildung der Modulnote bei k fungen:	arithmet	arithmetisches Mittel der Ergebnisse in den Modulteilprüfungen						n			
		SWS	СР	Seme	ster							
					1	2	3	4	5	6	7	8
	1 Methodik des Physikunter- richts	S	3	4, davon 4 CP FD								4
	2 Analyse fachlicher Unterrichtsprozesse	S	2	4, davon 4 CP FD								4
	3 Physikdidaktisches Wahl- pflichtseminar	S	2	3, davon 3 CP FD								3
	Summe		7	11								11

b. Liste der Import- und Exportmodule

Herkunftsstudiengang	Modul (Titel, Nummer)	FB	SoSe / WiSe	СР
B. Sc. Physik	M1 Einführung in die Physik 1 / VEX1A, VEX1B	13	WiSe	7
B. Sc. Physik	M6 Struktur der Materie / VEX3, VEX3, VEX4A, VEX4B	13	SoSe/WiSe	12
Physik	Fortgeschrittenenpraktikum	13	SoSe und WiSe	12

Dienstleistung für Studiengang	Modul (Titel, Nummer)	FB	SoSe / WiSe	СР
- keine -				